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Abstract. We describe the vector-tensor multiplet and derive its Chern-Simons coupling to the N = 2
Yang-Mills gauge superfield in harmonic superspace.

The N = 2 vector-tensor multiplet, which was discovered
many years ago by Sohnius, Stelle and West [1] and then
forgotten for a while, has recently received much interest
[2–4] due to the fact that it originates in the low-energy
effective Lagrangian of N = 2 heterotic string vacua. As
a representation of N = 2 supersymmetry, this multiplet
is very similar to the massless 8 + 8 Fayet-Sohnius hyper-
multiplet [5,6] which possesses an off-shell central charge
generating the equations of motion.

The vector-tensor multiplet is the only known N = 2,
D = 4 supersymmetric model that has not yet been for-
mulated in the harmonic superspace [7]. Since the har-
monic superspace is believed to be a universal framework
for N = 2 supersymmetric theories, finding a relevant for-
mulation for the vector-tensor multiplet seems to be of
principal importance. On the other hand, adequate for-
mulations of the vector-tensor multiplet in an N = 2 su-
perspace with central charges have been given in recent
papers [8,9]. Our primary goal in this letter is to show
that the main results of [8,9] have a natural origin in the
harmonic superspace approach.

We start with re-formulating the Sohnius prescription of
constructing supersymmetric actions [6] in harmonic su-
perspace. The harmonic central charge superspace [7] ex-
tends the N = 2 central charge superspace [6], with coor-
dinates {xm, z, θα

i , θ̄
i
α̇}, θα

i = θ̄α̇ i (where z is the central
charge real variable), by the two-sphere S2 = SU(2)/U(1)
parameterized by harmonics, i.e. group elements

(ui
− , ui

+) ∈ SU(2)

u+
i = εiju

+j u+i = u−
i u+iu−

i = 1 . (1)

The analytic basis of the harmonic superspace defined by

xm
A = xm − 2iθ(iσmθ̄j)u+

i u
−
j

zA = z + i(θ+αθ−
α − θ̄+α̇ θ̄

−α̇)
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θ±
α = u±

i θ
i
α

θ̄±
α̇ = u±

i θ̄
i
α̇ (2)

is most suitable to the description of analytic superfields
Φ(ζ, u) which depends only on the variables

ζM ≡ {xm
A , zA, θ

+α, θ̄+α̇ } (3)

and harmonics u±
i (the original basis of the harmonic su-

perspace is called central [7]). Below we will mainly work
in the analytic basis and omit the corresponding subscript
“A”. The explicit expressions for the covariant derivatives
D±

α = Di
αu

±
i , D̄±

α̇ = D̄i
α̇u

±
i in the analytic basis can be

found in [7].
The GIKOS rule [7] of constructing N = 2 supersym-

metric actions
∫
dζ(−4)duL(4) dζ(−4) = d4xd2θ+d2θ̄+ (4)

involves an analytic superfield L(4)(ζ, u) of U(1)-charge
+4 which is invariant (up to derivatives) under central
charge transformations generated by ∂z ≡ ∂/∂z

∂

∂z
L(4) =

∂

∂xm
f (4)m . (5)

Here L(4) is a function of the dynamical superfields, their
covariant derivatives and, in general, of the harmonic vari-
ables.

In harmonic superspace there exists a prescription to
construct invariant actions even for non-vanishing central
charges. The construction makes use of a constrained an-
alytic superfield L++(ζ, u). L++ is an analytic superfield
of U(1)-charge +2

D+
α L++ = D̄+

α̇ L++ = 0 (6)

which satisfies the covariant constraint

D++
c L++ = 0 . (7)
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D++
c acts according to

D++
c = D++ + i (θ+αθ+α − θ̄+α̇ θ̄

+α̇)
∂

∂z

D++ = u+i ∂

∂u−i
− 2i θ+σmθ̄+

∂

∂xm
(8)

on analytic superfields. Then the action

S =
∫
dζ(−4)du

(
(θ+)2 − (θ̄+)2

) L++ (9)

is supersymmetric and, hence, invariant under central
charge transformations. Under a supersymmetry transfor-
mation

δxm = −2i (ε−σmθ̄+ + θ+σmε̄−)
δz = 2i (ε−θ̄+ − ε̄−θ̄+)

δθ+α = ε+α δθ̄+α̇ = ε̄+α̇ (10)

S changes by

δS =
∫
dζ(−4)du

{(
(θ+)2 − (θ̄+)2

)
δz

∂

∂z
L++

−2
(
ε+θ+ − ε̄+θ̄+

) L++
}
. (11)

Making use of the identity 2
(
ε+θ+ − ε̄+θ̄+

)
= −iD++δz

and integrating by parts in (11), one arrives at

δS = −i
∫
dζ(−4)du δzD++

c L++ (12)

and this is equal to zero due to (7). The action (9) is real
if L++ is imaginary

L̆++ = −L++ (13)

with respect to the analyticity preserving conjugation
(smile) ˘ =

?
¯ introduced in [7], where the operation ¯

denotes the complex conjugation and the operation ? is de-
fined by (u+

i )? = u−
i , (u−

i )? = −u+
i , hence (u±

i )?? = −u±
i .

Equation (9) is the formulation of the Sohnius action
[6] (see also [10]) in the harmonic superspace. More ex-
plicitly, in the central basis the constraint (7) means

L++ = Lij(x, z, θ)u+
i u

+
j (14)

for some u-independent superfields Lij , and the analytic-
ity conditions (6) take the form

D(i
α Ljk) = D̄

(i
α̇ Ljk) = 0 . (15)

Since
dζ(−4) =

1
16
d4xD−αD−

α D̄
−
α̇ D̄

−α̇ (16)

the action (9) turns, upon integrating over S2, into

S =
1
12

∫
d4x

(
DαiDj

α − D̄i
α̇D̄

α̇j
) Lij . (17)

It is instructive to consider two examples. The 8 +
8 Fayet-Sohnius off-shell hypermultiplet coupled to the
N = 2 gauge multiplet is described in the N = 2 central
charge superspace by a superfield qi(x, z, θ) satisfying the
constraints [6]

D(i
α q

j) = D̄(i
α̇ q

j) = 0 (18)

with Di
α the gauge covariant derivatives. This is equivalent

to the fact that the superfield q+ = qiu
+i is covariantly

analytic
D+

α q
+ = D̄+

α̇ q
+ = 0 (19)

and satisfies the gauge covariant constraint

D++
c q+ = 0 . (20)

In the analytic basis D++
c is

D++
c = D++ + i (θ+αθ+α − θ̄+α̇ θ̄

+α̇)
∂

∂z
D++ = D++ + iV ++ (21)

where V ++ is the analytic Yang-Mills gauge prepotential
[7]. Therefore, the gauge invariant superfield

L++
FS =

i
2

(
q̆+∂zq

+ − ∂z q̆
+q+

)
+m q̆+q+ (22)

meets the requirements (6) and (7). Because of (20), the
corresponding action can be rewritten in the following
form

SFS =
∫
dζ(−4)du

{−q̆+D++q+

+m q̆+q+
(
(θ+)2 − (θ̄+)2

)}
(23)

which is very similar to the action functional of the infi-
nite-component q-hypermultiplet [7]. Another non-trivial
example is the effective action of the N = 2 super Yang-
Mills theory [11,12] (supersymmetry without central
charges)

SSYM = tr
∫
d4xd4θF(W ) + tr

∫
d4xd4θ̄F̄(W̄ ) (24)

where W is the covariantly chiral field strength of the
N = 2 gauge superfield [13]. SSYM can be represented as
follows

SSYM =
1
4

tr
∫
dζ(−4)du

(
(θ+)2 − (θ̄+)2

) L++
SYM

L++
SYM =

(D+)2 F(W ) − (D̄+)2 F̄(W̄ ) . (25)

It is obvious that L++
SYM satisfies the requirements (6) and

(7).

A free vector-tensor multiplet can be described in the har-
monic superspace by an analytic spinor superfield Ψ+

α (ζ, u)

D+
αΨ

+
β = D̄+

α̇Ψ
+
β = 0 (26)
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subject to the constraints

D++
c Ψ+

α = 0 (27)

D−αΨ+
α = D̄−α̇Ψ̆+

α̇ (28)

with Ψ̆+
α̇ the smile-conjugate of Ψ+

α . Equation (27) implies
that in the central basis Ψ+

α reads

Ψ+
α = Ψαi(x, z, θ)u+i Ψ̆+

α̇ = −Ψ̄ i
α̇(x, z, θ)u+

i (29)

for some u-independent superfields Ψαi and its complex
conjugate Ψ̄ i

α̇ . Then, the analyticity conditions (26) are
equivalent to

D(i
αΨ

j)
β = D̄

(i
α̇Ψ

j)
β = 0 (30)

and the reality condition (28) takes the form

DαiΨαi = D̄α̇iΨ̄
α̇i . (31)

Equations (30) and (31) constitute the constraints defin-
ing the field strengths of the free vector-tensor multiplet
[8].

Using the anticommutation relations

{D+
α , D

−
β } = 2i εαβ∂z {D̄+

α̇ , D̄
−
β̇

} = 2i εα̇β̇∂z

{D+
α , D̄

−
β̇

} = −{D−
α , D̄

+
β̇

} = −2i ∂αβ̇ (32)

one immediately deduces from (26) and (28) generalized
Dirac equations

∂zΨ
+
α = −∂αβ̇Ψ̆

+β̇ ∂zΨ̆
+
α̇ = ∂βα̇Ψ

+β (33)

and hence
∂2

zΨ
+
α = 2Ψ+

α . (34)

The last relation can be also obtained from (26) and (27),
in complete analogy to the Fayet-Sohnius hypermultiplet.
We read (33) and (34) as a definition of the central charge.
If one had not allowed for a central charge then the con-
straints (26)–(28) would have restricted the multiplet to
be on-shell.

The super Lagrangian associated with the vector-
tensor multiplet reads

L++
vt,free = −1

4

(
Ψ+αΨ+

α − Ψ̆+
α̇ Ψ̆

+α̇
)
. (35)

Under central charge transformations it changes by deriva-
tives

∂zL++
vt,free = −1

2
∂αα̇

(
Ψ+αΨ̆+α̇

)
. (36)

The functional

Svt,free =
∫
dζ(−4)du

(
(θ+)2 − (θ̄+)2

) L++
vt,free (37)

can be seen to coincide with the action given in [8]. An-
other possible structure

L++
der,free = − i

4

(
Ψ+αΨ+

α + Ψ̆+
α̇ Ψ̆

+α̇
)

(38)

produces a total derivative when integrated over the su-
perspace.

The constraints (26)–(28) can be partially solved in terms
of a real u-independent potential L(x, z, θ)

Ψ+
α = iD+

αL L̄ = L (39)

which is still restricted by

D+
αD

+
β L = D+

α D̄
+
β̇
L = 0 . (40)

If one includes coupling to the N = 2 Yang-Mills gauge
superfield, described by the covariantly chiral strength W
and its conjugate W̄ [13], the constraints (40) can be con-
sistently deformed as follows [9]

D+αD+
α L = κ tr

(D̄+
α̇ W̄ · D̄+α̇W̄

)
(41)

D+
α D̄+

β̇
L = −κ tr

(
D+

αW · D̄+
β̇
W̄

)
(42)

where L is a real u-independent gauge invariant superfield
while W is invariant under the central charge. Such a de-
formation corresponds in particular to the Chern-Simons
coupling of the antisymmetric tensor field, contained in
the vector-tensor multiplet, to the Yang-Mills gauge field.

The independent components of the vector-tensor mul-
tiplet can be chosen as

Φ = L | D = ∂zL |
ψi

α = Di
αL | ψ̄α̇i = D̄α̇iL |

Gαβ = 1
2 [Dαi ,Di

β ] L | Ḡα̇β̇ = − 1
2 [D̄α̇i , D̄i

β̇
] L |

Hαα̇ = H̄αα̇ = − 1
2 [Di

α , D̄α̇i] L | (43)

while the components of the vector multiplet are

X = W | X̄ = W̄ |
λi

α = Di
αW | λ̄α̇i = D̄α̇iW̄ |

Fαβ = − 1
4 [Dαi ,Di

β ]W | F̄α̇β̇ = 1
4 [D̄α̇i , D̄i

β̇
]W̄ |

Y ij = − i
4

(DαiDj
αW + D̄i

α̇D̄α̇jW̄
) | (44)

with Fmn the field strength associated with the Yang-Mills
gauge field Am. The fields Hm and Gmn are subject to the
constraints

∂mH
m = κ tr

{
FmnF̃mn − 1

2
∂m(λiσmλ̄i)

}

∂mG̃
mn = 2κ ∂m tr

{
(X + X̄)F̃mn +

i
4
λiσmnλi

+
i
4
λ̄iσ̄

mnλ̄i
}

(45)

which can be solved in terms of an antisymmetric tensor
Bmn and a vector Vm

Hm = εmnkl∂nBkl + κ tr
{
εmnkl(AnFkl − 2

3
AnAkAl)

−1
2
λiσmλ̄i

}

Gmn = ∂mVn − ∂nVm + 2κ tr
{
(X + X̄)Fmn +

1
4
λiσmnλi

−1
4
λ̄iσ̄mnλ̄

i
}
. (46)
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Because of the constraints (41) and (42), the super-
field D+

α L is no longer analytic. But also the Lagrangians
(35) and (38) can be deformed to obtain supersymmetric
actions with Chern-Simons interactions. Similarly to [9],
let us introduce the following real superfield

Σ = L − κ

2
tr

(
W − W̄

)2
. (47)

Using the Bianchi identities [13,14]

D̄+
α̇W = 0 (D+)2W = (D̄+)2W̄ (48)

one can prove the important identities

D+
α D̄+

β̇
Σ = 0 (49)

(D+)2Σ = −(D̄+)2Σ

=
κ

2
{
(D̄+)2tr

(
W̄ 2) − (D+)2tr

(
W 2)}. (50)

Therefore, the imaginary superfield

L++
vt =

1
4

{D+αΣD+
αΣ +Σ(D+)2Σ

−D̄+
α̇ΣD̄+α̇Σ

}
(51)

satisfies both the constraints (6) and (7), and therefore
can be used to construct a supersymmetric action. The
corresponding action functional obtained by the rule (9)
describes the Chern-Simons coupling of the vector-tensor
multiplet to the N = 2 gauge multiplet. It was first de-
rived in component approach [4] and then in N = 2 super-
space [9]. We give only the bosonic part of the component
Lagrangian:

Lvt =
1
2
∂mΦ∂mΦ− 1

2
HmHm − 1

4
GmnGmn +

1
2
D2

+iκGmn tr
{
(X − X̄)F̃mn

}
−iκHm tr

{
(X − X̄)Dm(X + X̄)

}
−2κ

(
Φ− κ

2
tr (X − X̄)2

)
tr

{DmX̄ DmX

−1
2
FmnFmn − 1

2
Y ijYij +

1
4
[X, X̄]2

}
+2κ2 tr

{
(X − X̄)DmX̄

}
tr

{
(X − X̄)DmX

}
−κ2 tr

{
(X − X̄)Fmn

}
tr

{
(X − X̄)Fmn

}
−κ2 tr

{
(X − X̄)Y ij

}
tr

{
(X − X̄)Yij

}
+fermionic terms . (52)

Now, we generalize the total derivative Lagrangian (38)
(which is an N = 2 analog of F̃ F or θ-term). Similar to
[9], we introduce the real superfield

Ω = L +
κ

2
tr

(
W + W̄

)2
. (53)

Its properties read

D+
α D̄+

β̇
Ω = 0 (54)

(D+)2Ω = (D̄+)2Ω

=
κ

2
{
(D̄+)2tr

(
W̄ 2) + (D+)2tr

(
W 2)}. (55)

As a consequence, the imaginary superfield

L++
der =

i
4

{D+αΩD+
αΩ +Ω(D+)2Ω

+D̄+
α̇ΩD̄+α̇Ω

}
(56)

respects both the constraints (6) and (7) and therefore
defines a supersymmetric action.

The Lagrangian (56) is the deformation of (38). It is
therefore a deformation of the Chern-Simons form F̃ F
which carries topological information. In components, the
bosonic Lagrangian reads

Lder,bos = ∂m

[ (
Φ+

κ

2
tr (X + X̄)2

)

× (
Hm − iκ tr

{
(X + X̄)Dm(X − X̄)

})

+
1
2
εmnklVn∂kVl

]
. (57)

and contains total derivative terms only.
In summary, in the present paper we have described

the vector-tensor multiplet and its Chern-Simons coupling
to the N = 2 gauge multiplet in harmonic superspace. It
would be of interest to find an unconstrained prepoten-
tial superfield formulation for the vector-tensor multiplet,
which may exist, similar to the Fayet-Sohnius hypermul-
tiplet, in harmonic superspace only.

After this work had appeared on the hep-th archive we be-
came aware of a recent paper [16] where the authors pre-
sented a two-form formulation of the vector-tensor multi-
plet in central charge superspace and derived its coupling
to the non-Abelian supergauge multiplet via the Chern-
Simons form. The later paper is a natural development of
the research started in [8].
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